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SCHEDULE OF THE SECTION
Geometry and Topology of Manifolds

• Monday – September 4th

16:00–17:00 Antonio Viruel, Finite sets containing zero are mapping
degree sets

coffee break

17:30–18:15 Maciej Borodzik, Concordance implies regular homotopy
in codimension 2
18:15–19:00 Łukasz Michalak, Reeb graph invariants of Morse func-
tions, manifolds and groups

• Tuesday – September 5th

14:30–15:15 Aniceto Murillo, The rational homotopy type of classify-
ing spaces of homotopy automorphisms
15:15–16:00 Anna Gąsior, Spin-structures on real Bott manifolds with
Kaehler structure

coffee break

16:30–17:15 Aleksandra Borówka, Quaternionic manifolds with ro-
tating circle action
17:15–18:00 Pawel Raźny, A spectral sequence for free isometric lie
algebra actions

• Wednesday – September 6th

12:00–12:30 Maciej Czarnecki, Boundary of Hadamard foliations and
laminations
12:30–13:00 Kacper Grzelakowski, Triple points on Calabi-Yau three-
folds
13:00–13:30 Wacław Marzantowicz, Lefschetz number of equivariant
mapping defined in equivariant cohomology theory

• Thursday – September 7th

14:30–15:15 Jordi Daura Serrano, Large Finite group actions on as-
pherical manifolds
15:15–16:00 Martín Saralegui Aranguren, Some Gysin sequences

coffee break

16:30–17:15 Rafał Lutowski, Complex Vasquez invariant
17:15–18:00 Andreas Zastrow, The configuration spaces of the Ear-
ring Space are aspherical
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Concordance implies regular homotopy
in codimension 2

Maciej Borodzik

University of Warsaw
email: mcboro@mimuw.edu.pl

joint work with Mark Powell and Peter Teichner

Abstract

We introduce immersed Morse theory to prove that concordance im-
plies regular homotopy in codimension 2.
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Quaternionic manifolds with rotating
circle action

Aleksandra Borówka

Jagiellonian University
Institute of Mathematics

email: aleksandra.borowka@uj.edu.pl

Abstract

B. Feix [3] (and D. Kaledin [5] independently) showed that there ex-
ists a hyperkähler metric on a neighbourhood of the zero section of the
cotangent bundle of any real-analytic Kähler manifold. B. Feix provided
an explicit construction of its twistor space and showed that any hyper-
kähler manifold admitting a rotating circle action near its maximal fixed
point set arises locally in this way. The construction have been further
generalized to hypercomplex manifolds (see Feix [4], Kaledin [6]), quater-
nionic manifolds (see Borówka, Calderbank [2]) and quaternion-Kähler
manifolds (see Borówka [2]). In this talk we will discuss the cases of the
construction. Then we will show how to apply it, to obtain a local classi-
fication result for quaternionic manifolds with rotating circle action near
maximal fixed point set. Finally we will mention connections with c-map.

[1] Borówka A., Quaternion-Kähler manifolds near maximal fixed point
sets of S1-symmetries, AMPA 2020

[2] Borówka A., Calderbank D., Projective geometry and the quater-
nionic Feix–Kaledin construction, Transactions of the American
Mathematical Society 2019.

[3] Feix B., Hyperkahler metrics on cotangent bundles, Journal für die
reine und angewandte Mathematik 532 (2001), 33–46.

[4] Feix B., Hypercomplex manifolds and hyperholomorphic bundles,
Mathematical Proceedings of Cambridge Philosophical Society 133
(2002), 443–457.

[5] Kaledin D., Hyperkähler metrics on total spaces of cotangent bundles,
in D. Kaledin, M. Verbitsky, Hyperkähler manifolds, Math. Phys.
Series 12, International Press, Cambridge MA, 1999.

[6] Kaledin D., A canonical hyperkähler metric on the total space of a
cotangent bundle, in Proceeedings of the Second Quaternionic Meet-
ing, Rome (1999), World Scientific, Singapore, 2001.
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Boundary of Hadamard foliations and
laminations

Maciej Czarnecki

Uniwersytet Łódzki
Katedra Geometrii

email: maczar@math.uni.lodz.pl

Abstract

An Hadamard foliation (or lamination) is a foliation (resp. lamination)
of an Hadamard manifold (resp. Hadamard metric space) with all the
leaves possesing this property i.e. being connected, simply connected,
complete and nonopositively curved.

We shall discuss conditions under which ideal boundaries of leaves
laminate the ideal boundary of carrying space and observe how does it
work in case of the contracting boundary.

[1] Charney R., Sultan H., Contracting boundaries of CAT(0) spaces,
Journal of Topology 8 (2015), 93–117.

[2] Czarnecki M., Hadamard foliations of Hn, Differential Geometry and
its Applications 20 (2004), 357–365.

[3] Czarnecki M., Umbilical routes along geodesics and hypercycles in
the hyperbolic space, Differential Geometry and its Applications 64
(2019), 47–58.
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Large finite group actions on aspherical
manifolds

Jordi Daura Serrano

Universitat de Barcelona
Department de matemàtiques i informàtica

email: jordi.daura@ub.edu

Abstract

The theory of finite transformation groups studies the symmetries of
objects like topological spaces or manifolds by means of finite group ac-
tions. Two fundamental question are the following: Given a closed man-
ifold, which finite groups can act effectively on it? Conversely, which
topological properties should a closed manifold M have if we know a col-
lection of finite groups actions on M? The answer to these questions in
full generality is currently out of reach. One way to simplify them is to
study which properties do large finite groups acting on M should fulfil.

In this talk we will show how we can address these questions by study-
ing the Jordan property on the homeomorphism group of closed manifolds
or by introducing invariants like the discrete degree of symmetry (see [1]
for a recent survey on the topic). We will focus on the case of aspher-
ical manifolds, providing new examples of closed manifolds with Jordan
homeomorphism group and computing their discrete degree of symmetry.
We would also introduce a theory of iterated finite group actions, which
will help us to study rigidity questions on nilmanifolds.

[1] Riera I.M., Actions of large finite groups on manifolds,
arXiv:2303.07784 (2023).
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Spin-structures on real Bott manifolds
with Kaehler structure

Anna Gąsior

Maria Curie Skłodowska University in Lublin
email: anna.gasior@mail.umcs.pl

Abstract

The main purpose of the article is the problem of existence of spin
structures on real Bott manifolds which admit a Kähler structure.

It is known that spin structures on finite quotients of flat tori (flat
manifolds) is strictly connected to Sylow 2-subgroups of their holonomy
groups. But even knowing that the problem isn’t solved for flat manifolds
with holonomy group being elementary abelian 2-group, although few
years ago significant progress has been made in the case when the action
of a finite group on a torus is in a sense diagonal. We take advantage of
it and show that when a real Bott manifold admits a Kähler structure
then existence of a spin structure on it can be formulated with an easy
combinatorial condition.
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Triple points on Calabi-Yau threefolds

Kacper Grzelakowski

University of Lodz
Department of Mathematics and Computer Science

email: kacper.grzelakowski@wmii.uni.lodz.pl

Abstract

We discuss the bounds for the number of ordinary triple points on
complete intersection Calabi-Yau threefolds in projective spaces and for
Calabi-Yau threefolds in weighted projective spaces. In particular we
show that in P5 the intersection of a quadric and a quartic cannot have
more than 10 ordinary triple points. We provide examples of complete
intersection Calabi-Yau threefolds with multiple triple points. We obtain
the exact bound for a sextic hypersurface in Pr1 : 1 : 1 : 1 : 2s which is 10.
We also discuss Calabi-Yau threefolds that cannot admit triple points.

[1] Cynk S., Hodge numbers of hypersurfaces in P4 with ordinary triple
points, Advances in Geometry 21 (2021), no. 2, 293–298.

[2] Dolgachev I., Weighted projective varieties, Group actions and vector
fields (1981), 34–71.

[3] Dolgachev I., Corrado Segre and nodal cubic threefolds, In: Casnati
G., Conte A., Gatto L., Giacardi L., Marchisio M., Verra A. (eds)
From Classical to Modern Algebraic Geometry. Trends in the History
of Science. BirkhĂ¤user (2016), 429–450.

[4] Endrass S., Persson U., Stevens J., Surfaces with triple points, Jour-
nal of Algebraic Geometry 12 (2003), 367–404.

[5] Finkelnberg H., Werner J., Small resolutions of nodal cubic threefolds,
Indagationes Mathematicae (Proceedings) 92 (1989), no. 2, 185–198.

[6] Fortuna E., Frigerio R., Pardini R., Projective Geometry Solved Prob-
lems and Theory Review, Springer International Publishing Switzer-
land, 2016.

[7] Gross M., Popescu S., Calabi-Yau threefolds and moduli of Abelian
Spaces I, Compositio Mathematica 127 (2001), 169–118.

[8] Kapustka G., Kapustka M., Primitive contractions of Calabi-Yau
threefolds, Communications in Algebra 37 (2009), no. 2.

[9] Kloosterman R., Rams S., Quintic threefolds with triple points, Com-
munications in Contemporary Mathematics 23 (2021), no. 1.
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[10] Reid M., Graded rings and varieties in weighted projective space,
https://homepages.warwick.ac.uk>more>grad, 2002.

[11] Roberts J., Hypersurfaces with Nonsingular Normalization and Their
Double Loci, Journal of Algebra 53 (1978), 253–267.

[12] Stevens J., Sextic surfaces with ten triple points, arXiv:0304060v1
(2003).

[13] van Straten D., A quintic hypersurface in P4 with 130 nodes, Topol-
ogy 32 (1993), no. 4, 857–864.

194



Complex Vasquez invariant

Rafał Lutowski

University of Gdańsk
Faculty of Mathematics, Physics and Informatics

email: rafal.lutowski@ug.edu.pl

joint work with Anna Gąsior

Abstract

A flat manifold is a closed connected Riemannian manifold with van-
ishing sectional curvature. By the Auslander-Kurnanishi theorem, every
finite group is a holonomy group of some flat manifold. In 1970 Vasquez
showed, that for every finite group G there is a natural number npGq
such that every flat manifold X 1 with holonomy group G is a flat toral
extension of a flat manifold X of dimension less than or equal to npGq.
In particular this means that we have a fiber bundle

T Ñ X 1 Ñ X,

where T is a flat torus.
In the talk I will present an analogue of Vasquez number, which is

defined for the family compact flat Kähler manifolds. Besides showing
some dependencies between real and complex versions of the invariant,
I will focus on the problem of the projection map of the bundle to be
holomorphic.
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Lefschetz number of equivariant
mapping defined in equivariant

cohomology theory

Wacław Marzantowicz

Adam Mickiewicz University
Faculty of Mathematics & Computer Science
email: waclaw.marzantowicz@amu.edu.pl

joint work with Arturo Espinosa-Baro

Abstract

In late 80-ties of twenty century in the works of M. Atiyah and G.
Segal, and later of F. Hirzebruch and T. Höfer, an invariant related to the
Euler characteristic of the orbit space had been studied. This invariant
was inspired by a paper of the theoretical physicists L. J. Dixon, J. A.
Harvey, C. Vafa and E. Witten. In the first two articles it was shown that
this invariant is expressed in the terms of equivariant K-theory. Inde-
pendently, a decade earlier the second author studied a Lefschetz number
λGpfq of equivariant map f : X G

ÑX in the K˚G-theory showing its main
properties. The aim of this project is to show that: The Lefschetz number
λGpfq P RpGqbC shares majority of properties of the Euler characteristic
type invariant mentioned above generalizing the latter. Its specification
for f “ id|X in K˚G-theory gives previously defined invariant thus ex-
tends results of referred works. Applications to study the existence of
fixed orbits of maps equivariant with respect of co-finite groups, e.g. the
crystallographic group,s is in progress.
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Reeb graph invariants of Morse
functions, manifolds and groups

Łukasz P. Michalak

Adam Mickiewicz Univeristy
Faculty of Mathematics and Computer Science

email: lukasz.michalak@amu.edu.pl

Abstract

The Reeb graph of a Morse function on a closed manifold is obtained
by contracting each connected component of its level sets. There are two
necessary and sufficient conditions for a finite graph to be realized as the
Reeb graph of a Morse function on a given closed manifold: it needs to
have the so-called good orientation and its first Betti number cannot ex-
ceed the corank of the fundamental group of the manifold. Moreover, any
free quotient of this group can be represented as the Reeb epimorphism
of a Morse function which is induced on fundamental groups by the quo-
tient map from the manifold to the Reeb graph. It leads to the study
of relations between the notions of equivalence of epimorphisms onto free
groups, cobordism of systems of hypersurfaces and topological conjugation
of Morse functions.

However, the realization of a graph as the Reeb graph of a Morse
function is possible only up to a homeomorphism of graphs in general. The
minimum number of degree 2 vertices in Reeb graphs of Morse functions is
a strong invariant of the topology of the manifold. It has three essentially
different lower bounds, which for orientable 3-manifolds are improved by
the inequality involving the Heegaard genus. Moreover, another bound is
defined in terms of finite presentations of the fundamental group. We use
Freiheitssatz, a fundamental fact from one-relator groups, to calculate it
in some cases.
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The rational homotopy type of
classifying spaces of homotopy

automorphisms

Aniceto Murillo

Universidad de Málaga
email: aniceto@uma.es

joint work with Mario Fuentes and Yves Félix and extracted from [1, 2]

Abstract

We will describe the rational homotopy type of classifying spaces of
homotopy automorphisms of nilpotent complexes in terms of certain Lie
algebras of derivations.

[1] Fuentes M., Félix Y., Murillo A., Lie models of homotopy automor-
phisms monoids and classifying fibrations, Advances in Mathematics
402 (2022), 1–64.

[2] Fuentes M., Félix Y., Murillo A., Realization of Lie algebras of
derivations and moduli spaces of some rational homotopy types,
arXiv:2206.14124v1 (2022), to appear in Algebraic and Geometric
Topology.
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A spectral sequence for free isometric
lie algebra actions

Paweł Raźny

Jagiellonian University
Faculty of Mathematics and Computer Science

email: pawel.razny@uj.edu.pl

Abstract

Assume that pM, gq is a compact Riemannian manifold with a free
isometric action of a Lie algebra g. We present a new spectral sequence,
arising from the restriction of the standard filtration of the spectral se-
quence of the foliation FG (see [1]) by orbits of the g-action to a certain
subcomplex of the de Rham complex, which connects the basic cohomol-
ogy of the foliation, the Lie algebra cohomology of g and the de Rham
cohomology of M . The construction is a generalization of the Gysin long
exact sequence in Sasakian Geometry (see [3]) and is an extension of our
prior work [4] on K-structures (see [2]).

[1] Álvarez López J.A., A finiteness theorem for the spectral sequence of
a Riemannian foliation, Illinois Journal of Mathematics 33 (1989),
no. 1, 79–92.

[2] Blair D.E., Geometry of manifolds with structural group UpnqˆOpsq,
Journal of Differential Geometry 4 (1970), no. 2, 155–167.

[3] Boyer C.P., Galicki K., Sasakian Geometry, Oxford Mathematical
Monographs, Oxford University Press, 2007.

[4] Raźny P., Cohomology of manifolds with structure group UpnqˆOpsq,
Geometriae Dedicata 217 (2023), no. 58.
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Some Gysin sequences

Martín Saralegui Aranguren

Université d’Artois
LML

email: martin.saraleguiaranguren@univ-artois.fr

Abstract

We are studying a smooth isometric action Φ: G ˆM Ñ M of a Lie
group on a manifold M , and our goal is to establish certain connections
between the cohomology of M and that of the quotient space M{G.

Which cohomology groups should we consider for M{G?
In the case of an almost free action, the basic cohomology of M{G is

sufficient. However, when more complex isotropy subgroups are involved,
the basic intersection cohomology ofM{G becomes a better adapted tool.
In addition to introducing this cohomology, we will conclude the talk by
presenting several Gysin sequences that cover specific cases such as G “ R,
S1, and S3.

[1] Royo Prieto J.I., Saralegi Aranguren M., The Gysin sequence for
S3-actions on manifolds, Publicationes Mathematicae Debrecen 83
(2013) no. 3, 275–289.

[2] Royo Prieto J.I., Saralegi Aranguren M., The Gysin braid for S3-
actions on manifolds, arXiv:2301.09002 (2023).
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Finite sets containing zero are mapping
degree sets

Antonio Viruel

Universidad de Málaga
Departmento de Álgebra, Geometría y Topología

email: viruel@uma.es

joint work with Cristina Costoya and Vicente Muñoz

Abstract

In this lecture, we address several questions which have been raised
about DpM,Nq, the set of mapping degrees between two oriented closed
connected manifolds M and N of the same dimension:

DpM,Nq “ td P Z | Df : M Ñ N, degpfq “ du.

Neofytidis-Wang-Wang [1, Problem 1.1] discuss the problem of finding,
for any set A Ă Z containing 0, two oriented closed connected manifolds
M and N of the same dimension such that A “ DpM,Nq. Note that
0 P A is a necessary condition as the constant map M Ñ N is of degree
zero.

A cardinality argument shows that when A is an infinite set, the prob-
lem above is solved in the negative [1, Theorem 1.3].

In contrast, we shall show that given A, any finite set of integers con-
taining 0, there exist (infinitely many) oriented closed connected manifolds
M,N such that A “ DpM,Nq. Moreover, the manifolds M,N above can
be chosen to be either 3-dimensional, p4m´ 1q-dimensional for m ě 4 or
simply connected.

[1] Neofytidis C., Wang S., Wang Z., Realising sets of integers as map-
ping degree sets, to appear in Bulletin of London Mathematical So-
ciety.
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The configuration spaces of the Earring
Space are aspherical

Andreas Zastrow

University of Gdańsk
Institute of Mathematics

email: andreas.zastrow@ug.edu.pl

Abstract

The Earring Space (that during the past 40 years has usually been
called “the Hawaiian Earrings”) is a subspace of the plane which very
much resembles a graph, apart from having not the topology of a graph
at one of its points. But due to the accumulation at that point it must
be considered as a non-triangulable space. It is known to be aspherical
as a one-dimensional space [3, Corl.], a planar space [6, 2], and by having
a generalized universal contractible covering [5, Expl.4.15+(U3)]. Con-
versely graphs, open subsets of the plane or any surface different from S1

and RP 2 are known to have also aspherical (ordered and unordered) con-
figuration spaces [4, Corl.2.2], [1, Corl.3.4]. The fact that it is not known
whether these results extend to the nearest non-triangulable spaces has
been brought to my attention by Daciberg Lima Gonçalves. While it is
at the time of writing this abstract it is not clear, whether generalized
covering space theory and the action of their deck-transformation groups
in this case suffice to extend the classical proofs also in the case of the
Earring Space, the talk will describe a more direct proof that the ordered
and unordered configuration spaces of the Earring Space are, indeed, as-
pherical.

[1] Abrams A.D., Configuration spaces of colored graphs, Geometriae
Dedicata 92 (2002), 185–194.

[2] Cannon J.W., Conner G.R., Zastrow A., One-dimensional sets and
planar sets are aspherical, Topology and its Applications 120 (2002),
no. 1-2, 23–45.

[3] Curtis M.L., Fort M.K., Homotopy groups of one-dimensional spaces,
Proceedings of the American Mathematical Society 8 (1957), 577–
579.

[4] Fadell E., Neuwirth L., Configuration spaces, Mathematica Scandi-
navica 10 (1962), 111–118.
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[5] Fischer H., Zastrow A., Generalized universal covering spaces and the
shape group, Fundamenta Mathematicae 197 (2007), 167–196.

[6] Zastrow A., Planar sets are aspherical, Habilitationsschrift, Ruhr-
Universität Bochum, 1997-1998.
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