OPTIMAL TRANSPORT METHODS FOR UNDERSTANDING MODEL ROBUSTNESS

JAN OBŁÓJ

ABSTRACT. Across vast array of applications, mathematics is used to build models which create pathways from inputs to outputs. These models can often be seen as probability measures: discrete (empirical measures over a given data set) or continuous (resulting from an SDE), over finite-dimensional spaces or over pathspaces. The theory of Optimal Transport (OT) offers powerful fully non-parametric tools to measure distances between probability measures, trace geodesics in the space of probability measures, project onto its subsets. In this talk, I will survey some recent advancements that leverage OT tools and intuition, to describe and manage models, helping with selecting/calibrating models and quantifying model uncertainty. I will use questions from mathematical finance as my motivating examples while focusing on providing an overview of the field with its novel mathematical contributions and challenges. In particular, I will discuss robust pricing and hedging and its link to Martingale-OT, non-parametric calibration via Semimartingale-OT, and Wasserstein distributionally robust optimization and the resulting non-parametric Greeks and risk measurements. I will also mention some applications in statistics and machine learning.

The talk is based on works with many collaborators, including: D. Bartl, S. Drapeau, S. Eckstein, G. Guo, I. Guo, B. Joseph, T. Lim, G. Loeper, S. Wang and J. Wiesel.

OXFORD UNIVERSITY